Multivariate Stochastic Process Models for Correlated Responses of Mixed Type
نویسندگان
چکیده
We propose a new model for correlated outputs of mixed type, such as continuous and binary outputs, with a particular focus on joint regression and classification, motivated by an application in constrained optimization for computer simulation modeling. Our framework is based upon multivariate stochastic processes, extending Gaussian process methodology for modeling of continuous multivariate spatial outputs by adding a latent process structure that allows for joint modeling of a variety of types of correlated outputs. In addition, we implement fully Bayesian inference using particle learning, which allows us to conduct fast sequential inference. We demonstrate the effectiveness of our proposed methods on both synthetic examples and a real world hydrology computer experiment optimization problem where it is helpful to model the black box objective function as correlated with satisfaction of the constraint.
منابع مشابه
Phase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملApplication of Multivariate Control Charts for Condition Based Maintenance
Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the information obtained from the condition monitoring to the actual state of the system, it is usually required a stochastic model. On the other hand, considering the interactions and similarities that exist between CBM and statistical process control (SPC), the integrated models for CBM and SPC have been ...
متن کاملTail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models
Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...
متن کاملModelling of Correlated Ordinal Responses, by Using Multivariate Skew Probit with Different Types of Variance Covariance Structures
In this paper, a multivariate fundamental skew probit (MFSP) model is used to model correlated ordinal responses which are constructed from the multivariate fundamental skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To achieve an appropriate VC structure for reaching reliable statistical inferences, many types of variance covariance (VC) structures are considered ...
متن کاملMultivariate process capability indices on the presence of priority for quality characteristics
Multivariate Process Capability Indices (MPCI) show how well a manufacturing process can meet specifica-tion limits when quality characteristics enclose a relative correlation. Process capability is an important and commonly used metric for assessing and improving the quality of a production process. When quality charac-teristics of a product are correlated then an attractive comes close to MPC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015